94 research outputs found

    Design of Revising Proximity between Space and Time Cues on Flight Deck Displays to Support NextGen – The Second Phase

    Get PDF
    The prior first phase of this study investigated the effectiveness of new design of flight deck display for required time of arrival operation of NextGen by collecting objective query response data during autopilot flights and subjective data about the perception between display condition and situation awareness level. To evaluate pilots’ mental workload during the operations when they interacted with novel flight deck display design, this second phase provided pilots with simulation flight tasks arriving at four successive waypoints on time in the same display conditions as the first phase and asked them to rate their mental workload ratings. The workload was significantly lower with the High Proximity condition - all space and time data were integrated into a single display and temporal conformance graphics were added removing the need of control display unit - than with the traditional display condition. This result strengthened the implications from the first phase: the close spatial proximity between space and time cues and the support of graphical temporal conformance indicator showed a promise for improved required time of arrival navigation

    Design of Revising Proximity between Space and Time Cues on Flight Deck Displays to Support NextGen – The First Phase

    Get PDF
    The objective of this study is to develop and evaluate novel display formats to support RTA operations for near to midterm NextGen. Traditional cockpit displays separate space and time information in distant display sources in heterogeneous formats (graphics vs. text). This design composition may cause potential pilot errors when required time of arrival (RTA) obligations are imposed at every waypoint in NextGen. Pilots were randomly assigned to four different display conditions in a simulator – one traditional display with distant space and time cues, and three novel displays with close spatial proximity between the two cues. In the first phase of the experiment for this paper, pilots firstly participated in query tests answering space/time statuses during autopilot RTA flights. The novel displays did not degrade pilots’ situation awareness of space-time as an objective measure. For subjective measure, their situation awareness was significantly higher when the space and time cues were integrated into a single display with graphical temporal conformance indicators. The close spatial proximity between space and time cues and the support of graphical temporal conformance indicator showed a promise for improved RTA navigation

    Recommendations Supporting Development of Flight Deck DataComm Text and Graphic Display Evaluation Guidance

    Get PDF
    In the Next Generation Air Transportation System (NexGen), voice communications will become less frequent, and most communication will occur via data communications -- uplink messages (UM) (to pilot) and downlink messages (DM) and requests (to ATC). Clearances may include simple one-element clearances such as CLIMB TO [altitude] or complex clearances created by concatenating messages to create flight trajectories that include ATC-authorized route segments, altitudes, and at least one required time of arrival (RTA). Due to the complexity of clearances, aircraft and flight deck equipment manufacturers may seek approval for new and modified flight deck displays to more clearly depict clearances to the flight crew, likely using text and graphics. This research evaluated text and hybrid text and graphic concepts to develop human factors (HF) recommendations for specialists who participate in certification of new and modified flight deck DataComm displays, and as a potential update to AC 20-140, Guidelines for Design Approval of Aircraft Data Link Communication Systems Supporting Air Traffic Services (ATS)

    Left Atrial Size Physiologic Determinants and Clinical Applications

    Get PDF
    Left atrial (LA) enlargement has been proposed as a barometer of diastolic burden and a predictor of common cardiovascular outcomes such as atrial fibrillation, stroke, congestive heart failure, and cardiovascular death. It has been shown that advancing age alone does not independently contribute to LA enlargement, and the impact of gender on LA volume can largely be accounted for by the differences in body surface area between men and women. Therefore, enlargement of the left atrium reflects remodeling associated with pathophysiologic processes. In this review, we discuss the normal size and phasic function of the left atrium. Further, we outline the clinically important aspects and pitfalls of evaluating LA size, and the methods for assessing LA function using echocardiography. Finally, we review the determinants of LA size and remodeling, and we describe the evidence regarding the prognostic value of LA size. The use of LA volume for risk stratification is an evolving science. More data are required with respect to the natural history of LA remodeling in disease, the degree of LA modifiability with therapy, and whether regression of LA size translates into improved cardiovascular outcomes

    Global analyses of human immune variation reveal baseline predictors of postvaccination responses.

    Get PDF
    A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Advances in Aviation Psychology: Volume 1

    No full text
    Aviation remains one of the most active and challenging domains for human factors and applied psychology. Since 1981, the biennial International Symposium on Aviation Psychology (ISAP) has been convened for the purposes of (a) presenting the latest research on human performance problems and opportunities within aviation systems, (b) envisioning design solutions that best utilize human capabilities for creating safe and efficient aviation systems, and (c) bringing together scientists, research sponsors, and operators in an effort to bridge the gap between research and application. Though rooted in the presentations of the 17th ISAP, held in 2013 in Dayton, Ohio, Advances in Aviation Psychology is not simply a collection of selected proceeding papers. Based upon the potential impact on emerging trends, current debates or enduring issues present in their work, select authors were invited to expand on their work following the benefit of interactions at the symposium. The invited authors include the featured keynote and plenary speakers who are all leading scientists and prominent researchers that were selected to participate at the symposium. These contributions are supplemented by additional contributors whose work best reflects significant developments in aviation psychology. Consequently the volume includes visions for the next generation of air management and air traffic control, the integration of unmanned (i.e. remotely piloted vehicles) into operational air spaces, and the use of advanced information technologies (e.g. synthetic task environments) for research and training. This book is the first in a series of volumes to be published in conjunction with each subsequent ISAP. The aim of each volume is not only to report the latest findings in aviation psychology but also to suggest new directions for advancing the field

    Advances in Aviation Psychology: Volume 1

    No full text
    Aviation remains one of the most active and challenging domains for human factors and applied psychology. Since 1981, the biennial International Symposium on Aviation Psychology (ISAP) has been convened for the purposes of (a) presenting the latest research on human performance problems and opportunities within aviation systems, (b) envisioning design solutions that best utilize human capabilities for creating safe and efficient aviation systems, and (c) bringing together scientists, research sponsors, and operators in an effort to bridge the gap between research and application. Though rooted in the presentations of the 17th ISAP, held in 2013 in Dayton, Ohio, Advances in Aviation Psychology is not simply a collection of selected proceeding papers. Based upon the potential impact on emerging trends, current debates or enduring issues present in their work, select authors were invited to expand on their work following the benefit of interactions at the symposium. The invited authors include the featured keynote and plenary speakers who are all leading scientists and prominent researchers that were selected to participate at the symposium. These contributions are supplemented by additional contributors whose work best reflects significant developments in aviation psychology. Consequently the volume includes visions for the next generation of air management and air traffic control, the integration of unmanned (i.e. remotely piloted vehicles) into operational air spaces, and the use of advanced information technologies (e.g. synthetic task environments) for research and training. This book is the first in a series of volumes to be published in conjunction with each subsequent ISAP. The aim of each volume is not only to report the latest findings in aviation psychology but also to suggest new directions for advancing the field.https://corescholar.libraries.wright.edu/books/1083/thumbnail.jp
    corecore